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Abstract

Efficient on-device neural network (NN) inference has vari-
ous advantages over cloud-based processing, including pre-
dictable latency, enhanced privacy, greater reliability, and
reduced operating costs for vendors. This has sparked the
recent rapid development of microcontroller-scale NN accel-
erators, often referred to as neural processing units (uUNPUs),
designed specifically for ultra-low-power applications.

In this paper, we present the first comparative evaluation
of a number of commercially-available uNPUs, as well as the
first independent benchmarks for several of these platforms.
We develop and open-source a model compilation frame-
work to enable consistent benchmarking of quantized models
across diverse uNPU hardware. Our benchmark targets end-
to-end performance and includes model inference latency,
power consumption, and memory overhead, alongside other
factors. The resulting analysis uncovers both expected per-
formance trends as well as surprising disparities between
hardware specifications and actual performance, including
1NPUs exhibiting unexpected scaling behaviors with increas-
ing model complexity. Our framework provides a foundation
for further evaluation of yNPU platforms alongside valuable
insights for both hardware designers and software develop-
ers in this rapidly evolving space.

1 INTRODUCTION

Performing neural network (NN) inference on constrained
devices has applications across numerous domains, including
wearable health monitoring [1], smart agriculture [2], real-
time audio processing [3], and predictive maintenance [4].
On-device inference offers various advantages over cloud-
based alternatives: improved latency for time-critical appli-
cations, enhanced privacy, as well as reduced operating costs
for vendors, by eliminating the need to transmit sensitive
data, and improved reliability by removing dependence on
network connectivity. Given their unique form factor and
low power consumption, microcontrollers (MCUs) are widely
used in resource-constrained environments. However, their
performance is often constrained by limitations in memory
capacity, throughput, and compute.

The computational demands of modern neural networks
(NNs) have catalyzed the development of specialized hard-
ware accelerators across the computing spectrum, from high-
performance data centers to ultra-low-power and embedded
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devices. At the resource-constrained end of the spectrum,
microcontroller-scale neural processing units (uNPUs) have
recently emerged, designed to operate within extremely tight
power envelopes — in the milliwatt or sub-milliwatt range
— while still providing low latency for real-time inference.
These devices represent a new class of accelerator, combin-
ing the power efficiency of MCUs with the cognitive capa-
bilities previously exclusive to more powerful computing
platforms. The core advantage of uNPUs stems from their
ability to exploit the inherent parallelism of neural networks
with dedicated multiply-accumulate (MAC) arrays alongside
specialized memory structures for weight storage. Such ar-
chitectural specialization enables yNPUs to achieve orders
of magnitude improvement in latency compared to general-
purpose MCUs executing equivalent workloads.

Despite the growing availability of uNPU platforms, the
field lacks a standardized evaluation or comprehensive bench-
mark suite. Existing benchmarks focus solely on Analog
Devices’ MAX78000 [5-7], lacking any side-by-side compar-
ison with other platforms. Hardware vendors provide perfor-
mance metrics based on proprietary evaluation frameworks,
often using disparate NN models, quantization strategies,
and other varying optimizations. This heterogeneity across
evaluation methods, and absence of independent verification
of vendor-provided performance claims, creates uncertainty
for hardware designers and embedded software develop-
ers in selecting the most suitable yNPU platform for their
application’s constraints. The lack of standardized bench-
marking also hampers research by obscuring the relationship
between architectural design and real-world performance.
Given the rapid pace of development and increasing diversity
of available yNPU platforms, establishing reliable compara-
tive benchmarks has become an urgent need for the field.
To this end, we make the following contributions:

o Side-by-Side Benchmark of yNPU Platforms: We con-
duct the first comparative evaluation of commercially-
available yNPU platforms, enabling direct performance
comparisons across diverse hardware architectures under
consistent workloads and measurement conditions.

e Independent Benchmarks: We also provide the first
fine-grained and independent performance benchmarks
for several yNPU platforms that have not previously been
subject to third-party evaluation, offering unbiased verifi-
cation of vendor performance claims.



e Open-Source Model Compilation Framework: We de-
velop and release! an open-source framework that en-
ables consistent and simplified transplanting of NN models
across diverse uNPU platforms, reducing the engineering
overhead associated with cross-platform evaluation.

e Developer Recommendations: Informed by our bench-
mark results, we provide actionable recommendations to
developers regarding platform selection, key focus areas
for model optimization, and trade-offs for various applica-
tion scenarios and constraints.

In developing a unified compilation and benchmarking
framework, we standardize model representations across
the various pNPU platforms, enabling direct comparison
of latency, memory, and energy performance. Our evalua-
tion also includes fine-grained analysis of the various model
execution stages, from NPU initialization and memory in-
put/output overheads to CPU pre/post-processing — aspects
that can significantly impact end-to-end performance but
are often not addressed in technical evaluations. The result-
ing analysis uncovers both expected performance trends as
well as surprising disparities between hardware specifica-
tions and actual performance, including yNPUs exhibiting
unexpected scaling behaviors with increasing model com-
plexity. We hope our findings provide valuable insights to
both developers and hardware architects.

2 BACKGROUND & MOTIVATION

2.1 Resource-Constrained
Neural Computing

The shift from cloud-based to on-device neural computing
has numerous advantages for real-time data processing, es-
pecially with increasing concerns regarding data privacy and
security [8]. Unlike cloud-based solutions, local inference
mitigates security risks by processing sensitive data locally,
which is particularly advantageous in domains such as med-
ical diagnostics and surveillance [9, 10]. Additionally, local
processing reduces end-to-end latency alongside operating
costs for model vendors. However, traditional NN acceler-
ators, such as GPUs and TPUs, are ill-suited to resource-
constrained environments given their power consumption
and large form factors [11, 12].

MCUs are compact, low-power computing platforms, often
reliant on a single CPU and shared memory bus [13]. While
MCUs are commonly adopted for resource-constrained IoT
applications [14-16], they generally lack the computational
resources for efficient NN inference. Specifically, the compu-
tational capability of typical MCUs is often limited to a few
million MAC operations per second, far below the tens of
billions MACs/s required for real-time NN inference. Their
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Figure 1: typical yNPU hardware architecture
absence of dedicated hardware acceleration results in large
latency overheads and elevated power consumption during
NN processing. Limited SRAM and flash memory also often
poses challenges for efficiently managing the large weight
matrices required for NN models.

Given the various shortcomings of traditional MCUs,
microcontroller-scale pNPUs are emerging as a response.
These specialized NN accelerators offer dedicated neural pro-
cessing hardware, providing higher throughput for NN work-
loads, meeting the stringent requirements of real-time NN
inference [17-19] while maintaining low-power operation.
Collectively, uNPUs position themselves as a key solution for
efficient, real-time NN processing in resource-constrained
environments.

2.2 yuNPU Hardware Design

p#NPU hardware design is optimized for efficient tensor oper-
ations via specialized MAC units and parallelizable memory
hierarchies [20, 21]. Fig. 1 illustrates the architecture of a
typical uNPU, composed of a systolic array of processing el-
ements (PEs). Notably, each PE contains its own MAC units
and, importantly, its own weight memory space to avoid
memory contention and maximize parallelization. The array
of PEs is linked by an inter-PE communication grid, which
connects to a large global buffer and SRAM/DRAM via an
on-chip network [22]. Efficient memory hierarchy optimiza-
tion is achieved by partitioning available RAM, along with
implementing high-bandwidth memory interfaces and data
prefetching mechanisms, addressing the memory bottlenecks
faced by traditional MCUs when handling large NN model
weights. yNPUs mainly vary by their number of PEs, PE
layout and clustering, memory hierarchy layout, and the
availability/amount of storage/MAC units in each PE.

These architectural advantages, coupled with low-power
optimization techniques such as power gating, enable yNPU
platforms to deliver low-power, high-throughput perfor-
mance for real-time NN inference.

2.3 Benchmarking yNPU Platforms

Adoption of yNPU Platforms: The increasing demand for
on-device neural computing has accelerated the development
and commercialization of uNPUs. This is evidenced by the
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growing number of vendors, including Arm [23], who have
released yNPU platforms to market.

Need for Comprehensive Benchmarking: Existing work
on pyNPU platforms mainly focuses on practical applications
and/or model optimizations [24-26], lacking fine-grained
performance analysis from a systems perspective. In evalu-
ating memory usage, latency, power, and throughput, across
puNPU platforms, we aim to uncover critical performance
bottlenecks, guiding researchers towards more efficient soft-
ware and NN model design.

Limitations of Existing Benchmarks: Existing bench-
marks of yNPUs focus on a single platform, lacking hori-
zontal comparisons across the now wide variety of available
platforms [6, 7, 27]. This narrow perspective limits under-
standing of the variations in performance and task-based ap-
plicability across different uNPUs. Existing standalone bench-
marks also have significant shortcomings. Chiefly, most focus
solely on the model’s inference forward pass, overlooking
other adjacent operations within the end-to-end model in-
ference or application pipeline(s), such as NPU initialization,
memory input/output (I/0), and CPU pre/post-processing.
While often neglected, these factors can significantly impact
overall performance and efficiency.

3 INFRASTRUCTURE & METHODOLOGY

We begin by detailing our benchmark hardware and models,
then provide a comprehensive overview of our benchmark-
ing framework and model inference pipeline.

3.1 Hardware

To provide a comprehensive benchmark, we evaluate a di-
verse range of widely-used, commercially-available yNPU
platforms, from ultra-low-power uNPUs to high-performance
NPU-equipped system-on-chip (SoC) architectures. These
are evaluated alongside MCUs without dedicated neural hard-
ware for comparison. Our selection covers a wide range of
computational capabilities (<5 to >500 GOPs), memory con-
figurations (128 KB to 2 MB RAM), and bit-width support
(1-bit quantized to 32-bit floating-point operations). Fig. 2
provides a visualization of peak GOPs (Giga Operations Per
Second) vs. peak power for the various yNPU platforms in-
cluded in our benchmark (on a log scale). Table 3.1 details
our set of benchmark yNPUs, and we provide more detail on
each platform below.

The MAX78000 (or MAX78K) [5] from US-based Analog
Devices features a Cortex-M4F with a RISC-V coprocessor,
each capable of acting as the primary processor, along with
a proprietary 30-GOPS CNN accelerator. The latter has a
dedicated 512 KB SRAM for input data, 442 KB for weights,
and 2 KB for biases, and supports quantized operations at
1, 2, 4, and 8-bit precision. The same fine-grained bit-width

quantization is not yet widely supported on other uNPU plat-
forms, or indeed in common software libraries designed for
ML on resource-constrained devices; TFLite/LiteRT [28], for
example, only supports 8-bit integer and 16-bit float weight
quantization. The MAX78000 also has 512 KB of flash and
128 KB of CPU-only SRAM. This platform is among the best-
documented commercially-available yNPUs; previous work
has benchmarked its CNN accelerator under various config-
urations [6, 7, 27], alongside exploring optimal model and
data loading strategies for its 2D memory layout [29].

The GAPS8 [30], part of GreenWaves Technologies’ Green-
Waves Application Processor series, features an 8-core RISC-
V cluster and 22.65-GOPS hardware convolution engine for
neural network acceleration at 8 or 16-bit precision. The
platform has 512 KB of L2 RAM, up to 8 MB of L3 SRAM,
and 20MB flash storage, enabling it to store and run larger,
more complex models or mixture-of-experts (MoE) architec-
tures. The GAP series of uNPUs have also been the subject
of several recent works, again mainly centered on model
optimization [26, 31, 32]; no platform benchmark exists yet.

The Himax HX6538 WE2 (or HX-WE2) [33] is a more
powerful uNPU platform from Taiwan-based semiconductor
manufacturer, Himax Technologies. This platform features a
Corstone-300 set up, with Cortex M55 CPU and Ethos U55
NPU, delivering up to 512 GOPS. The platform also features
512KB TCM, 2MB SRAM, and 16MB flash, suitable for large
or more complex models, but at an increased power draw.

NXP’s MCXN947 [34] is part of the MCX N94x line of
MCUs, featuring dual Cortex-M33 CPUs and NXP’s eiQQ Neu-
tron NPU. The MCXN947 is designed for lower-power appli-
cations, with 8-bit neural acceleration of only 4.8 GOPS. The
platform features 512 KB RAM and 2 MB flash storage.

Our benchmark also includes MCUs without neural hard-
ware for comparison, to quantify any efficiencies gained from
specialized NPU architectures.

The STM32H7A3ZI [35] is a high-performance MCU
based on the Cortex M7, with 2 MB of flash and 1.4 MB of
SRAM. Manufactured by Swiss-based ST Microelectronics,
it is frequently used with on-board NNs [16, 36].

The ESP32s3 MCU [37] features dual-core Tensilica LX6
processors, 512 KB of SRAM, 2MB PSRAM, and 8MB flash.
Notably, whilst primarily a low-power MCU, it advertises
NN acceleration capabilities with “support for vector instruc-
tions ... providing acceleration for neural network comput-
ing". This is achieved via an extended instruction set, which
includes 128-bit vector operations, e.g., complex multiplica-
tion, addition, subtraction, shifting, and comparison.

We also include the MILK-V Duo [38], a RISC-V SoC
built around the CVITEK CV1800B processor. Unlike the
previous MCUs/uNPUs, it runs a Linux OS, supporting more
flexible NN workloads at a much-increased power budget.
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Figure 2: a visualization of the various yNPUs used
in our benchmark, and how they compare in terms
of GOPS, peak power draw observed, and theoretical
efficiency (GOPS/mW).

This platform represents the upper bound of our evaluation
in terms of computational power and software flexibility.
3.1.1  Note on CPU Frequency We configure the various
UNPU platforms to operate at a uniform CPU frequency.
While this permits direct comparison of architectural effi-
ciency, it should be noted that many of the platforms are
capable of operating at higher frequencies than evaluated
- approaching the GHz range in some cases. Our method
intentionally isolates architectural efficiency, but further ex-
perimentation could explore the impact of varying CPU fre-
quencies on end-to-end latency and power consumption.

Other hardware parameters are largely standardized by
default. Further work could investigate their impact on per-
formance; the number of active PEs, memory layout con-
figuration, and other hardware-specific optimizations are
variably configurable across the yNPU platforms and can
influence overall efficiency.

3.2 Models

Table 2 details the various CNN-based models used in our
benchmark, covering image classification, object recognition,
and signal reconstruction applications. We provide more
detail on each model below.

CIFAR10-NAS: the optimal CNN model generated by neural
architecture search (NAS) for the CIFAR-10 dataset, combin-
ing diverse convolutional units, pooling layers, and unique
connectivity patterns. The model was generated using the
Once-for-All (OFA) NAS framework, a weight-sharing-based
framework that decouples search and training by construct-
ing a supernet model from which various hardware-specific
subnet models can be derived [39]. This is our largest model,
with 74.3 Million MACs (MMACS) and 36.4 Million FLOPs
(MFLOPs). Trained on the CIFAR-10 dataset, with 3x32x32
input size and 10-class output.
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ResidualNet: a CNN framework built around residual func-
tions, helping to mitigate gradient vanishing. ResidualNet
has 37.7 MMACs and 18.5 MFLOPs. Trained on the CIFAR-
100 dataset, with 3x32x32 input size and 100-class output.
SimpleNet: a simpler CNN framework composed of a basic
stack of convolutional and pooling layers, without complex
branches or residual functions. Despite its basic architecture,
SimpleNet often outperforms more complex models includ-
ing certain versions of ResidualNet [40]. SimpleNet has 38.0
MMACs and 18.5 MFLOPs. Trained on the CIFAR-100 dataset,
with 3x32x32 input size and 100-class output.
Autoencoder: a symmetric encoder-decoder model. This
model is our simplest, with just 0.5 MMACs and 0.2 MFLOPs.
Trained on a machine fault detection dataset, generated us-
ing the SpectraQuest Machinery Fault Simulator [41]. The
input/output size is 3x256.

YoloV1: a single-stage object detection CNN that uses multi-
scale output feature maps to predict bounding boxes and class
probabilities. YoloV1 has 43.83 MMACs and 21.2 MFLOPs.
Trained for person-only detection on the COCO dataset [42],
with input size 3x96x96 and 3 output layers, which result
from pruning its final layers for cross-platform uniformity
(more details below). The non-max suppression (NMS) post-
processing step is performed on CPU.

3.2.1 Ensuring Model Uniformity We encountered substan-
tial variability in operator support across the benchmark
platforms. The NXP-MCXN947’s eIQ Neutron NPU lacks
native support for softmax operations, for example, neces-
sitating its implementation as a CPU post-processing step
for relevant models. Similarly, operations associated with
non-maximum supression (NMS) in the YoloV1 model were
inconsistently supported across platforms, requiring us to
also move the entire NMS operation to CPU post-processing.
This explains the unusual multi-component output shape of
our YoloV1 model (see Table 2). The benchmark platforms
also outline varying levels of support for operator compati-
bility. The MAX78000, for example, only supports 1D con-
volution with kernel sizes 1 to 9 and 2D convolution with
kernel sizes of 1 by 1 or 3 by 3. Unsupported operations will
fall back to CPU execution and incur latency penalties.

By identifying and constructing models using a core subset
of operators that are universally supported across all uNPUs,
we aim to ensure that any measured performance differences
stem from fundamental architectural discrepancies rather
than variations in model compilation and optimization.

3.2.2 Quantization We quantize all benchmark models to
INT8 precision, as it is supported by all evaluated NPUs.
However, it’s important to note that while this enables a
more direct architectural comparison, it may not reflect the
optimal accuracy-performance tradeoff on each platform;
some NPUs, such as the MAX78000, support lower bit-widths
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Table 1: the various uNPU platforms used in our benchmark.

MCU CPU(s) NPU Flash RAM GOPs  Bit Cap.
Cortex-M4 512 KB NPU
MAX78000 RISC-V MAXIM-own 512KB 128 KB CPU 30 1,2,4,8
HX-WE2 2 MB SRAM
(Corstone-300) Cortex-M55 Ethos-U55 16 MB 512 KB TCM 512 8,16,32
NXP-MCXN947  Cortex-M33 x2 elQ Neutron 2 MB 512 KB 4.8 8
512KB L2

GAPS8 RISC-V GAP-own 20 MB L3 SMB L3 22.65 8,16
STM32H74A37Z1 Cortex-M7 - 2 MB 1.4 MB - 8, 16, 32
ESP32 Tensilica LX6 - 4 MB 520 KB - 8, 16, 32
MILK-V RISC-V CV1800B - 64 MB 500 8, 16, 32

XuanTie C906 x2

Table 2: the various models used in our benchmark.
Note: MMACs/MFLOPs are forward-only.

Model Input Shape Output Shape MMACs MFLOPs

CIFAR10-NAS 3x32x32 1x10 74.2512  36.3776

ResidualNet 3x32x32 1x100 37.7812 18.4612

SimpleNet 3x32x32 1x100 38.0006 18.4612

Autoencoder 3x256 3x256 0.5455 0.2020
1x12x12x12

YoloV1 3x96x96 1x12x12x2 43.8294 21.2244
1x12x12x10

(e.g., 1,2, 4-bit), and others, like the HX-WE2 support floating-
point acceleration (e.g., FLOAT16 and 32-bit).

We perform post-training quantization (PTQ) on all mod-
els/platforms. While platforms like the MAX78000 support
quantization-aware training (QAT) and fused operators, such
optimizations produce platform-specific models incompati-
ble with other NPUs. PTQ enables us to maintain structural
consistency across all platforms. Moreover, since our pri-
mary metrics of interest are latency and power consumption,
rather than inference accuracy, PTQ provides a sufficiently
representative model for performance evaluation. PTQ was
performed using a representative calibration dataset appro-
priate to each model’s domain. We did not apply per-channel
quantization for weights, instead using per-tensor quantiza-
tion to ensure compatibility across all platforms.

3.2.3 Compilation The various uNPUs support a wide range
of model formats, from platform-optimized versions of com-
mon model formats (e.g., TFLite) to platform-specific formats
(e.g., CVITEK’s CVIMODEL). To facilitate cross-platform de-
ployment, we developed a custom model compilation work-
flow for converting our base models into optimized for-
mats for each target NPU. Our workflow ingests Torch (or
ONNX/TFLM) base models along with various compiler
flags (i.e., target NPU platform, model input dimensions, bit-
precision requirements, representative PTQ calibration data,

etc), producing platform-specific optimized models with ac-
companying inference code.

The compilation process varies significantly by platform.
For example, models targeting the ARM Ethos-U55 (on the
HX-WEZ2) are compiled using the ARM Vela compiler, which
ingests TFLiteMicro (TFLM) models and produces binaries
optimized for the Ethos-U architecture. Vela applies platform-
specific optimizations, including memory reduction. We eval-
uate both the Size optimization strategy, HX-WE2 (S), which
minimizes SRAM usage, and the Performance strategy, HX-
WE2 (P), which prioritizes execution speed using available
arena cache if specified.

For other platforms, we utilize their respective toolchains
(e.g., the MAX78k’s SDK or the NXP elQ portal tools). In
each case, we configured such tools to maintain model struc-
ture equivalence while applying platform-appropriate op-
timizations. Note that in our model compilation workflow,
template inference code is often generated along with a com-
piled model. However, this doesn’t include model-specific
pre/post-processing steps, which should be implemented
manually by the developer, who can update the template
code as needed.

Fig 3 below details our model compilation framework for
converting a base (Torch/ONNX/TFLM) model into various
platform-specific formats. Our framework will be released
as open-source, and we hope its use can ease the process of
cross-platform model compilation and benchmarking.

3.3 Evaluation Metrics

We measure latency, power, energy-efficiency - in terms of
number of inference operations per m] - and memory usage
across each benchmark platform and model. The impacts of
various platform-specific model optimizations or compila-
tion workflows on model accuracy are out of scope for our
study. Latency can be considered proportional to throughput,
since batching and other amortization techniques are not
practical on pNPU platforms due to memory constraints.
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Figure 3: an overview of our model compilation workflow.
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Figure 4: power trace of YoloV1 inference on HX-WE2.

Latency: Latency is measured using each platform’s internal
timer. Notably, all MCUs, bar the MILK-V, are configured
to run at 100 MHz. The MILK-V does not support manual
frequency scaling, only DVFS. However, latency is inversely
proportional to CPU frequency, as described by T = N/f (T
denotes latency, N the number of cycles required for a task,
and f the operating frequency). Accordingly, we normalized
MILK-V’s latency to be comparable to performance under
uniform frequency conditions. Each model was run for 10
consecutive inferences. We report both the mean latency and
standard deviation to account for any run-to-run variability.
Power and Energy: We compute power and energy using
the Monsoon High Voltage Power Monitor [43] at a sampling
rate of 50 Hz. The input voltage (U) is set to 3.3 V, capturing
inference duration (t) and average power (P), from which the
average energy consumption (E = Pt) is derived. To ensure
stable measurements, we analyze only the data recorded

after a 1-minute operation period. Power measurements are
gathered over 10 repeated inferences, and we report both
mean and standard deviation. Fig. 4 details the power profile
of YOLOvV1 inference on the HX-WE2’s Ethos-U55 yNPU.
Inferences per mJ: To quantify energy efficiency, we in-
troduce ‘inferences per mJ’, I,;, capturing the number of
end-to-end inferences (i.e., memory transfer, CPU pre/post-
processing, and optionally NPU initialization) performed for
each millijoule of energy consumed.

Memory Usage: Memory usage is assessed by analyzing
the linker (.map) file generated by the compilation toolchain.
This file provides a detailed breakdown of memory allo-
cation, including code (.text), initialized data (.data), and
uninitialized data (.bss) segments. Flash memory usage is
calculated as the sum of the code and initialized data seg-
ments (.text + .data), while RAM usage includes both the
initialized and uninitialized data segments (.data + .bss). For
the MAX78000, with its dedicated NPU-only memory, the
RAM usage is computed separately for CPU and NPU.

3.4 Performance Breakdown

We break down each stage of model execution and mea-
sure per-stage latency and power consumption. This gran-
ular analysis helps identify specific bottlenecks in the in-
ference pipeline, alongside measuring overall end-to-end

2MAX78k (C) denotes use of its Cortex-M CPU, and (R) its RISC-V CPU.
HX-WE2 (S) denotes model compilation with the Vela Size optimization
flag, and (P) with the Vela Performance flag.
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Figure 5: stacked latency for each stage, model, and platform.?

performance. We also measure idle power consumption (i.e.,
each platform’s base power draw in the absence of active
computation). We provide more detail on each stage below:
(NPU) Initialization: This covers any NPU setup overhead,
including memory buffer allocation and kernel configuration.
Memory I/0: The cost/overhead of model and input data
loading, including movement of input tensors and model
weights from flash to NPU DRAM, and vice versa (i.e., output
tensors from NPU to CPU SRAM).
Inference: Executing the model’s forward pass on the NPU.
Post-Processing: Any additional operations required to be
performed on the CPU. This includes computing softmax
outputs for ResidualNet, SimpleNet, and CIFAR10-NAS mod-
els. YoloV1 post-processing includes NMS alongside output
class softmax. The Autoencoder model does not require post-
processing, since it produces direct reconstruction outputs.
Idle: The base power consumption of the various platforms,
when not actively performing computation.

For MCUs without neural hardware (i.e., the STM32H7A3ZI
and ESP32), Initialization and Memory I/O are combined.

4 RESULTS & DISCUSSION

Table 6, which can found in the supplementary material,
details our full latency and power measurements across each
stage, model, and platform.

4.1 Power and Efficiency Breakdown

Our results reveal significant variation in efficiency across
the benchmark platforms, as shown in Tables 3 and 4.

The MAX78000 (C) with Cortex-M4 CPU active demon-
strates the best overall efficiency across evaluated models
when NPU initialization overhead is considered, with con-
sistent <30ms end-to-end latency. The MAX78000 (R) with
RISC-V CPU lags slightly behind. This aligns with previous
standalone benchmarks [6].

The NXP-MCXN947 also achieves consistent sub-30ms
latency, with its fast initialization and memory I/O offsetting
the impact of (moderately) slower inference latency, deliv-
ering comparable (and in some cases, improved) efficiency
despite its lower-throughput accelerator.

Notably, the power-hungry but low-latency HX-WE2 plat-
form, with Arm Corstone-300 (Cortex-M55 & Ethos-U55
NPU), consistently beats the MAX78000 (C/R) in terms of
end-to-end latency across the various models, due to the lat-
ter’s large memory I/O overhead. The HX-WE2 (S/P) demon-
strates average ~1.93x and ~3.07x speedup in end-to-end
latency over the MAX78000 (C) and (R) respectively, but
~3.13x and ~3.33x increase in average power consumption.
We find the Vela Performance-optimized models, for the
HX-WEZ2, generally achieve slightly lower latency than the
Size-optimized models. However, their efficiency gain dimin-
ishes with model complexity — efficiency on Performance-
optimized YoloV1 is lower than on its Size-optimized variant.

The general-purpose MCUs without dedicated neural hard-
ware — the STM32H7A3ZI and ESP32s3 — demonstrate sig-
nificantly lower efficiency across all models. This result em-
pirically validates the advantage neural hardware provides
for performing on-device inference in constrained environ-
ments, with up to 2 orders of magnitude improvement in end-
to-end latency in some cases. However, the STM32H7A3ZI’s
power consumption during inference (54.91 - 56.11 mW) is
comparable to or lower than MAX78000 (C/R) for some mod-
els. This is particularly evident for the Autoencoder model,
where the STM32H7A3ZI achieves a surprisingly compet-
itive 3.483 I,,; — comparable to the best-performing plat-
forms in our suite. This anomaly is likely attributable to the
STM32H7A3ZI’s relatively efficient Cortex-M7 core when
operating on the Autoencoder’s simple computational struc-
ture (0.5455 MMACs). In contrast, the ESP32 consistently
exhibits high inference power consumption (129.74 - 157.17
mW) and latency (7.11 — 536.22 ms), despite its advertised
support for CPU-accelerated tensor operations. Altogether,
while general-purpose MCUs can achieve reasonable effi-
ciency for simple models, they quickly become impractical
for more complex NNss.

The MILK-V, our RISC-V SoC, also demonstrates low effi-
ciency across all models, due to its NPU initialization over-
head. We observe a different story, however, if initialization
overhead is removed from consideration (i.e., for continuous



Table 3: inferences per mJ (I,,,;) for evaluated models and platforms, including NPU initialization.
The largest I,,,; for each model is underlined and bolded, while the second largest is in bold.
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MAX78k (C) | MAX78k (R) GAP8 NXP-MCXN947 | HX-WE2 (S) | HX-WE2 (P) | MILK-V | STM32H7A3ZI | ESP32s3

NAS 1.10+0.002 0.85+0.001 0.1020.002 1.07+0.002 0.79+0.007 0.83£0.006 0.01+0.001 0.03+0.001 0.01+0.001
ResNet 1.24+0.003 0.85+0.002 0.17+0.002 1.97+0.003 0.85+0.006 0.84+0.019 0.01+0.001 0.06+0.001 0.02+0.001
SimpleNet 2.29+0.006 1.65£0.003 0.16+0.005 2.10+0.004 0.89+0.006 0.990.006 0.01+0.001 0.07+0.001 0.02+0.001
Autoenc 3.92+0.014 2.75£0.008 1.12+0.028 36.95+0.002 3.57+0.035 3.06+0.038 0.01+0.001 3.48+0.082 0.32+0.001
YoloV1_small 2.27+0.004 1.76+0.003 0.20 0.005 1.83+0.006 0.73+0.009 0.81+0.008 0.01+0.001 0.05+0.001 0.01+0.001

Table 4: inferences per m]J (I,,,;) for evaluated models and platforms, not including NPU initialization.
The largest I,; for each model is underlined and bolded, while the second largest is in bold.

MAX78k (C) | MAX78k (R) GAPS8 NXP-MCXN947 | HX-WE2 (S) | HX-WE2 (P) MILK-V

CIFAR10-NAS 1.11+0.002 0.85+0.001 0.11+0.002 1.09+0.002 0.98+0.009 1.04+0.008 2.75+0.281
ResNet 1.24+0.003 0.85+0.002 0.22+0.001 2.01+0.002 1.08+0.008 1.05+0.024 9.31+2.567
SimpleNet 2.30+0.006 1.66+0.003 0.21+0.007 2.13+0.004 1.13£0.008 1.29+0.010 4.13+0.459
Autoenc 3.94+0.014 2.78+0.008 6.25+0.203 47.06+1.956 22.45+0.392 12.97+0.232 13.74£1.953
YOlOVl_small 2.27+0.004 1.76+0.003 0.23+0.005 1.86+0.007 0.91+0.013 1.03+0.011 5.75+0.770

Table 5: flash and RAM use (KB) for evaluated models and platforms. The model with highest flash/RAM for each

platform is bolded. Note:

MAX78k’s RAM is split into CPU-only and NPU-only.

MAX78K (C) MAX78K (R) GAPS NXP-MCXN947 | HX-WE2(S) | HX-WE2(P) | SIM32H7A3 ESP3253
Flash RAM Flash RAM Flash | RAM | Flash | RAM | Flash | RAM | Flash | RAM | Flash | RAM | Flash | RAM
NAS | 347.67 | 4.96+29551 | 36439 | 6.16+295.51 | 358.46 | 534.56 | 569.94 | 37170 | 127.75 | 551.87 | 127.75 | 538.59 | 423.61 | 93.75 | 674.57 | 26886
ResNet | 425.38 | 4.98+372.84 | 446.92 | 6.91+372.84 | 25832 | 372.49 | 47152 | 38189 | 127.75 | 618.11 | 127.75 | 694.33 | 456.07 | 70.97 | 694.44 | 268.78
SimpleNet | 214.61 | 5.00+162.55 | 233.04 | 6.87+162.55 | 258.26 | 351.21 | 471.08 | 38190 | 127.75 | 553.18 | 127.73 | 566.67 | 45186 | 53.48 | 698.06 | 268.77
Autoenc | 184,15 | 6.46+13350 | 193.74 | 6.09+133.59 | 14331 | 19%.20 | 26136 | 38127 | 12544 | 336.06 | 12544 | 336.35 | 20357 | 2135 | 445.59 | 271.89
Yolo | 130.43 | 693+41.75 | 147.06 | 8.38+41.75 | 43.29 | 159.46 | 287.70 | 410.83 | 15232 | 263.81 | 152.32 | 319.10 | 119.28 | 167.52 | 355.19 | 268.77
operation). Without initialization, the MILK-V ranks highest 4.2 Latency and Memory I/O Breakdown
for efficiency across almost all benchmark models. Notably, 4 5 7 Npy initialization NPU initialization times vary sig-

despite a large idle power draw, it achieves blazingly fast
inference times (0.17 - 0.61 ms). Thus, for applications where
power consumption isn’t a major constraint and workloads
don’t require frequent NPU initialization/deinitialization, but
low-latency and a compact form factor are key, the MILK-V
could prove effective.

Fig. 7 details the power consumption breakdown across all
evaluated platforms; among these, the MAX78000 (10.87-80.41
mW) and NXP-MCXN947 (22.91-36.69 mW) exhibit the low-
est power draw across the benchmark models, with the NXP
showing the lowest variance in peak power across the exe-
cution stages, enabling more reliable energy budgeting.

Beyond peak power, idle power consumption is another
key consideration for low-power deployments, particularly
if workloads run infrequently — idle power also varies sig-
nificantly across our benchmark platforms. The MAX78000
demonstrates the lowest idle power of the various uUNPU
platforms (10.87 mW with RISC-V and 13.21 mW under
Cortex-M4). The HX-WE2 platform ranks highest (89.09
mW), raising concerns about its applicability in extremely
power-constrained scenarios (such as ones in which long
idle durations dominate overall energy usage).

nificantly across the benchmark platforms, from as low as
0.07 ms on the MAX78000 to 12.94 ms on the GAPS.

However, the actual initialization overhead, with respect
to end-to-end latency, is almost negligible on most uNPU
platforms except the GAP8 (7.46 ms to 12.92 ms initialization
latency across the various benchmark models). Such over-
head could again be problematic for duty-cycled applications,
where models must be frequently loaded/unloaded.

4.2.2 Memory I/0 Table 5 details flash and RAM usage across
our various benchmark platforms and models.

The significant memory I/O latency across all models on
the MAX78000 forms an obvious inference bottleneck, with
an average of 6.10x and 9.80x (Cortex-M4 and RISC-V) longer
spent on memory I/O than actual inference (e.g., 44.89 ms
vs. 2.96 ms for ResidualNet with the MAX78k (R), mean-
ing over 90% of end-to-end inference time is dedicated to
memory operations rather than computation). This implies
the MAX78000’s performance is largely memory-bound, and
aligns with previous standalone benchmarks [6]. Notably,
memory I/O operations are more efficient on the MAX78000’s
Cortex-M4 CPU than its RISC-V one. In contrast, memory I/O
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Figure 6: a visualization of average end-to-end latency vs power draw for evaluated models and platforms.
The inset graph provides a magnified view of yNPU platforms with lower end-to-end latency.

operations introduce negligible overhead across the other
benchmark platforms with shared SRAM.

Differing from CPUs and GPUs, which rely on a 1D con-
tiguous memory space, uNPU hardware adopts a 2D memory
layout; in this layout, one axis maps to parallel compute cores
and the other organizes the logical address space. As shown
in Fig. 1, each PE is equipped with its own weight memory
space to avoid memory contention and maximize paralleliza-
tion. This results in a hierarchical architecture with both
channel-wise and weight-wise parallelism, though with the
constraint that weights must use the same offset.

Recent work [29] has explored optimizing weight loading
strategies for such 2D memory layouts to shrink I/O latency
when switching models on a single device, including:

e virtualizing weight memory within the accelerator to re-
duce fragmentation,

e optimizing dynamic weight allocation to minimize load-
ing/unloading overhead,

e and weight preloading, where the next model’s weights
are loaded by the idle CPU into unused memory regions
before execution.

Further work should include automating memory man-
agement, alongside reducing I/O latency for single-model
execution, using techniques like just-in-time prefetching,
dynamic quantization, or input-adaptive pruning.

4.2.3 Inference Another unexpected finding is the superior
inference latency of the MAX78000 compared to the HX-
WE2. The MAX78000 (C), for example, demonstrates an aver-
age ~2.48x latency improvement of the HX-WE2 (P), despite
having significantly lower theoretical compute capacity (30
GOPs vs. 512 GOPs on the HX-WEZ2). This could be attributed
to more optimized weight-stationary dataflow patterns for
CNN workloads compared to the Arm Ethos-U55. However,
the HX-WE2 still wins in terms of end-to-end latency with
much reduced memory I/O latency. The relatively consistent

inference times across different models on the HX platforms
also suggest its architecture is optimized for larger models
than those in our benchmark suite. The MAX78000 demon-
strates more variability in inference latency (ranging from
0.14 ms to 4.63 ms), suggesting greater scalability across
differing model complexities.

The GAP8 demonstrates the highest end-to-end latency
across all models - averaging 17x slower than the MAX78000,
despite having similar compute capacity (22.65 GOPs vs. 30
GOPs on the MAX78000). However, again, the GAP8’s large
flash and RAM size make it more suitable for deploying large
models or MoE architectures

4.2.4 CPU Post-Processing Post-processing operations, while
often overlooked in benchmarking studies, can contribute
to end-to-end latency and overall efficiency. We find CPU
processing overhead is generally low across most of the eval-
uated platforms, in comparison to other execution stages,
but is non-negligible for YoloV1’s NMS on certain platforms.
For instance, the MAX78000 with RISC-V CPU active takes
3.82 ms in post-processing for YoloV1, compared to 2.62 ms
spent in actual inference. This outlines the importance of
minimizing CPU-dependent post-processing, and highlights
a key design consideration with our benchmark; by ensur-
ing all models are fully NPU-compatible across the various
platforms, we aim to enable a fair comparison of end-to-end
latency, avoiding bottlenecks or penalties caused by unsup-
ported operators falling back to CPU execution. However,
in real-world use, developers would build models that are
optimized for a given target platform, making it necessary
to consider the range of supported operators (which is quite
limited on certain NPUs), and accuracy or performance trade-
offs that might arise from using other, more compute-capable
platforms, with more complex or unmodified models.



CIFAR10-NAS ResidualNet

150

—~
125

@

o

> 5 N

1%*\ 1%\&* & @(‘v ,L\?
g€ e

S e

I Memory I/0

S\ N
{\%‘“\ 1%*@ e ?3'\ q'i\
o
W Y\* Y\* <«

I |nitialization

SimpleNet

VLT TR T ST [P [ B

2 S @ o
1#\ ,\@S‘ 0?? Qﬂ«\% 'LS \@u G
2t NN 2 € e
NS et N W AR

Il Inference

Millar et al.

Autoencoder YoloV1

N @) ot
q,@ ,L\? @“

X O QO N <
1%*\ 1%*\ & 'L\ & o %%*\ 1%*\ F @

[ Post-Processing Idle
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4.3 Task-Specific Considerations

Memory Constraints and Model Complexity Memory
capacity significantly influences the feasible model complex-
ity for each platform. The GAP8’s expansive memory (8MB
RAM, 20MB flash) enables deployment of substantially larger
models than possible on the MAX78000 (512KB NPU mem-
ory, 128KB CPU memory), for example. This difference be-
comes critical for applications requiring more complex mod-
els, such as multi-class object detection or audio classification
with large vocabulary sets.

The detailed memory I/O timing data provides additional

insights into how different platforms handle model loading.
The MAX78000’s long memory I/O times (8.84 - 26.53 ms) are
more suitable for persistent model deployment. In contrast
the HX-WEZ2’s comparatively large flash memory and low-
latency memory I/O (0.03 - 1.11 ms), but longer initialization
times (2.56 - 2.60 ms), are ideal for continuous inference or
dynamic model switching.
Operational Modes and Power Profiles The ability to sup-
port different operational modes significantly impacts a plat-
form’s suitability for specific applications. The MAX78000
displays high power variation between idle (10.87 - 13.21
mW) and inference (21.13 - 81.67 mW) states; hence, power
gating mechanisms could be effectively leveraged in duty-
cycled applications.

Further study of the various low-power modes available
on our benchmark platforms is needed, including wake-up
times, power gating mechanisms, and DVFS. Moreover, dual-
CPU platforms with asymmetric co-processing capabilities
could improve task distribution between cores — or enable
hierarchical task-based wake-up of CPU cores — leading to
further power-saving advantages. For instance, MAX78000’s
combination of low-power RISC-V and compute-capable
Cortex-M4 cores, when used in tandem alongside early-exit
strategies for dynamic, low-power inference, could further
optimize energy usage during model deployment.
Precision Requirements and Quantization Support The
bit-width support of each platform represents another im-
portant consideration for application-specific deployment.

The MAX?78000’s support for 1, 2, 4, and 8-bit operations
enables highly optimized model deployment for applications
where lower precision is acceptable, or for models amenable
to aggressive quantization.

Conversely, applications requiring higher numerical pre-
cision may benefit from platforms like the HW-WE2, which
supports floating-point acceleration up to 32-bit precision.

4.4 Summary of Results

We measured power consumption and latency for various
model architectures across commercially-available yNPU
platforms. We find GOPS isn’t a reliable predictor for estimat-
ing end-to-end latency, and memory bandwidth enormously
impacts performance.

The MAX78000 uNPU, with its Cortex-M4 CPU active,
offers the best overall efficiency, with NPU initialization con-
sidered, delivering consistent sub-30ms end-to-end latency
across all models. However, its performance is primarily
memory-bound, spending up to 90% of execution time on
memory I/O operations. The HX-WE2 platform achieves
an average end-to-end ~1.93x speedup over MAX78000 but
with ~3.13x higher power consumption. The NXP-MCXN947
also offers relatively comparable (<30ms) end-to-end latency,
with fast initialization and memory I/O; despite its lower
computational throughput, it exhibits high efficiency on our
lower-complexity, memory-light benchmark models.

General-purpose MCUs demonstrate significantly lower
efficiency, empirically validating the advantage of having
dedicated neural hardware.

Excluding initialization overhead (i.e., for applications
requiring continuous operation), the MILK-V ranks overall
highest in terms efficiency, with its large idle power draw
outweighed by fast end-to-end inference latency. Notably,
the NXP-MCXN947 ranks highest, both with and without
NPU initialization, for the Autoencoder model, delivering
over 2x efficiency gains on its nearest competitor.

Key platform differentiators include memory capacity (af-
fecting model complexity), power profiles (e.g., MAX78000
shows significant variation between idle and inference states,
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beneficial for duty-cycled applications), and precision sup-
port (e.g., MAX78000 supports 1-8 bit operations while HX-
WE2 supports up to 32-bit).

4.5 Future Directions

Advancing Hardware Architectures: Developing next-
generation gNPU architectures with larger on-chip cache
and improved memory throughput is an obvious priority.
This would (1) reduce the significant memory I/O overheads
observed in certain platforms (e.g., MAX78000) and (2) en-
able deployment of larger, more capable models or MoE
architectures for context-aware inference.

Optimizing Model Weight-Loading: Together with hard-
ware advancements, improved optimization of model ar-
chitectures and loading strategies to maximize data reuse
is also essential. The substantial memory I/O bottlenecks
observed across certain platforms underscore the need for
puNPU-specialized weight virtualization, dynamic allocation
optimization, and prefetching strategies.

Expanding Operator Support: Currently, most uNPU plat-
forms exhibit hugely limited operator support, focusing on
CNN-based operators. Future designs should incorporate
more expansive operator sets, towards supporting more di-
verse model architectures, such as transformers.
Improving Quantization and Model Compression: Fine-
grained bit-width quantization and other non-standard model
optimizations also remain inadequately supported across
uNPU platforms. This includes both a hardware and a soft-
ware aspect, with existing software libraries designed for
NN models on resource-constrained devices also generally
lacking flexibility; TFLite/LiteRT, for example, only supports
8-bit integer and 16-bit float weight quantization.
Enabling On-Device Training: Current uNPU platforms
exclusively support NN inference, with no support for on-
device training. However, model training on-device would
enable personalization, continual learning, and adaptation to
dynamic distribution shifts, without relying on cloud-based
processing — vital for data privacy and remote deployments.
Future yNPU designs should aim to support quantized on-
device training, requiring both memory-efficient training
algorithms alongside hardware support for backpropagation.
Standardizing Model Formats: The heterogeneity in sup-
ported model formats across our various benchmark plat-
forms is another issue. Vendors should aim to move towards
unified model formats to reduce cross-platform compilation
and deployment overheads.

Developing Accurate Simulators: Finally, reliable soft-
ware simulators and predictive models for inference latency,
power consumption, and memory utilization are notably ab-
sent for uNPUs (and MCUs in general). Such tools would
enable developers to optimize deployments without physical
hardware, accelerating the end-to-end development cycle.

4.6 Practical Recommendations

We offer the following practical recommendations for em-
bedded developers and hardware designers:

For Energy-Efficiency: The MAX78000 largely outperforms
other yNPU platforms in terms of energy-efficiency (when
including NPU initialization), making it particularly well-
suited for battery-powered applications. For extended battery
life, consider leveraging its ability to dynamically power-gate
portions of the system during idle periods.

For Latency-Critical Applications: The HX-WE2 platform
offers low-latency with fast NPU initialization, memory I/O,
and inference itself, making it best suited for applications
requiring responsive model switching, real-time adaptation
to changing conditions, or intermittent/duty-cycled opera-
tion. The NXP-MCXN947 also achieves low end-to-end infer-
ence latency at a significantly lower power budget, making
it ideal for power-constrained workloads. Meanwhile, for
latency-critical yet space-constrained applications, where
power consumption isn’t a major constraint and workloads
don’t require frequent NPU initialization/deinitialization,
more powerful SoC architectures, like the MILK-V, could
also be suitable. Further work could explore the performance
of other SoC platforms [44, 45].

For Large Models: The GAP8’s expansive memory makes it
uniquely suitable for deploying larger, more complex models
or implementing model-switching approaches where multi-
ple specialized networks are employed based on operating
conditions, despite its longer initialization times and infer-
ence latency. However, again, if power consumption isn’t a
major concern, the MILK-V’s low inference latency and large
memory capacity, with SD card support, could also make it
a strong alternative.

For Security with Efficiency: Being Arm-based, the NXP-
MCXN947 CPU includes Arm’s TrustZone [46], enabling
hardware isolation between secure and non-secure enclaves.
With its competitive end-to-end inference latency (0.96-25.95
ms) and low power draw (22.91-36.69 mW), it may be suitable
for security-centric applications without extreme constraints
in any one dimension. Future work could explore extending
its secure execution environment to integrate yNPU acceler-
ation via I/O passthrough, enabling protected yet efficient
NN inference.

For Simple Models: For sufficiently simple models, general-
purpose MCUs like the STM32H7 can achieve competitive
efficiency without dedicated neural acceleration, obviating
the need for specialized hardware.

4.7 Limitations

Several limitations should be considered when interpreting
our benchmarking results:



Frequency Standardization: While enforcing a uniform
CPU frequency across all platforms enables direct compar-
ison of architectural efficiencies, it fails to showcase each
platform’s peak performance — many of the benchmark plat-
forms can operate at higher frequencies than evaluated.
Fixed Quantization Bit-Width: Our standardized INT8
quantization approach, while enabling fair comparison, does
not leverage the full capabilities of platforms supporting
lower bit-width operations (e.g., MAX78000’s 1/2/4-bit sup-
port) or higher precision computation (e.g., HX-WE2’s
FLOAT16/FLOAT32 support). We also only focus on quanti-
zation as a means of reducing model size, excluding other
optimization methods.

CPU Configuration: We also enforced uniform CPU divider
settings across experiments; however, many platforms sup-
port variable divider configurations, which could potentially
impact overall efficiency profiles.

Model Adaptation Constraints: The requirement to main-
tain structural consistency across all platforms necessitated
compromises in model optimization. Platform-specific op-
timizations might yield slightly different efficiency profiles
than our standardized approach.

Operator Support: Similarl, by ensuring all models are fully
NPU-compatible across the various evaluated platforms, we
negate the impact of unsupported NN operators. Further
work should examine performance scaling across platforms
with different sets of supported operators, using more com-
plex or unmodified models, alongside precision-optimized
models for each platform, and the impact of platform-specific
architectural optimizations.

Development Toolchain Maturity We focus solely on
performance metrics in this study. However, another often
overlooked factor when selecting a target platform, deserv-
ing attention in future studies, is the relative maturity of its
development ecosystem and model optimization tools.

5 RELATED WORK

Benchmarking NN Models on Constrained Hardware:
A growing body of literature has explored NN benchmark-
ing on constrained and mobile computing platforms. Japana
et al’s MLPerf benchmark introduced the first industry-
standard open-source framework for performance evaluation
of NNs on mobile devices equipped with diverse NN accel-
erators and software stacks [47]. Laskaridis et al. recently
investigated the efficiency of large language models (LLMs)
on various SOTA mobile platforms, including Android, i0S
and Nvidia Jetson devices [48]. Reuther et al. explored the
performance and power characteristics of a wide range of
NN accelerators, spanning cellular GPUs, FPGA accelera-
tors, up to data center hardware [49]. However, previous
work on pNPU platforms has been limited to application-
level performance assessments [18, 19] or single-platform
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standalone benchmarks [6, 27]. Furthermore, existing single-
platform benchmarks often overlook certain operations in
the end-to-end model pipeline [7]. Hence, to the best of our
knowledge, our work details the first side-by-side and fine-
grained benchmarking study of NN models across a number
of commercially-available uNPU platforms.

NN Accelerators for MCUs: NN accelerators offer vast
potential in mitigating the computational and memory bot-
tlenecks of traditional MCUs for NN inference. Beyond com-
mercial accelerators (e.g., Arm Ethos-U55), recent work has
introduced new, more efficient custom designs. For instance,
Venkataramani et al. designed RaPiD, an accelerator tailored
for ultra-low-power INT4 inference, achieving an energy
efficiency of 3-13.5 TOPS/W (average 7 TOPS/W) [50]. Conti
et al. developed the XNOR Neural Engine, a digital, config-
urable hardware accelerator IP for binary neural networks,
integrated into an MCU with an autonomous I/O subsystem
and hybrid SRAM/standard cell memory [51].

Efficient On-Device Inference: Deploying NNs on MCUs is
constrained by the underlying hardware’s memory capacity
and throughput, with power consumption also often emerg-
ing as a bottleneck [52, 53]. Numerous works have explored
model compression [12, 54, 55], the design of more efficient
NN operators and architectures for lower resource usage
[56-58], and adaptive NN inference based on input com-
plexity and workload [59-61]. Various hardware-based opti-
mizations have also been studied, such as parallel dataflow
processing [21]. Our work aims to further advance efficient
NN deployment across yNPU platforms by identifying the
current SOTA alongside existing bottlenecks.

6 CONCLUSION

Our comprehensive evaluation of various NN models across
commercially-available uNPUs reveals both expected trends
as well as unexpected findings, contributing to the growing
body of knowledge on embedded neural computation.

The significant performance advantages of dedicated neu-
ral acceleration are clearly demonstrated, with specialized
platforms achieving up to two orders of magnitude higher
energy-efficiency compared to general-purpose MCUs. We
also highlight that theoretical computational capacity (GOPs)
alone is an insufficient predictor of real-world performance.
The stage-by-stage breakdown of model inference reveals
critical bottlenecks on certain platforms — particularly in
memory I/O operations — alongside key insights for future
work in hardware and model design. We urge developers
to consider trade-offs in latency, energy-efficiency, model
complexity, and operational flexibility to achieve optimal per-
formance in real-world deployments. We open-source our
benchmarking framework and hope its use can streamline
cross-platform model compilation and evaluation.



Benchmarking Ultra-Low-Power yNPUs

7

ACKNOWLEDGMENTS

This research was supported in part by the UKRI Open Plus
Fellowship (EP/W005271/1: Securing the Next Billion Con-
sumer Devices on the Edge), as well as funding from the
Grantham Institute, Imperial College London.

References

(1]

—_ —
[o NS, |
—

(10]

[11

—

(12]

[13

—_

(14

[l

[15

=

Pietro Mercati and Ganapati Bhat. Self-Sustainable Wearable and
Internet of Things (IoT) Devices for Health Monitoring: Opportunities
and Challenges. IEEE Design and Test, 42(2):35-60, 2025.

Sarah Condran, Michael Bewong, Md Zahidul Islam, Lancelot
Maphosa, and Lihong Zheng. Machine Learning in Precision Agricul-
ture: A Survey on Trends, Applications and Evaluations Over Two
Decades. IEEE Access, 10:73786-73803, 2022.

Chanwoo Kim, Dhananjaya Gowda, Dongsoo Lee, Jiyeon Kim, Ankur
Kumar, Sungsoo Kim, Abhinav Garg, and Changwoo Han. A Review
of On-Device Fully Neural End-to-End Automatic Speech Recognition
Algorithms. In 2020 54th Asilomar Conference on Signals, Systems, and
Computers, pages 277-283, 2020.

Emil Njor, Mohammad Amin Hasanpour, Jan Madsen, and Xenofon
Fafoutis. A Holistic Review of the TinyML Stack for Predictive Main-
tenance. IEEE Access, 12:184861-184882, 2024.

Maxim Integrated. MAX78000. 2025. https://www.analog.com/en.
Arthur Moss, Hyunjong Lee, Lei Xun, Chulhong Min, Fahim Kawsar,
and Alessandro Montanari. Ultra-Low-Power DNN Accelerators for
IOT: Resource Characterization of the MAX78000. In Proceedings
of the 20th ACM Conference on Embedded Networked Sensor Systems,
pages 934-940, 2022.

Mitchell Clay, Christos Grecos, Mukul Shirvaikar, and Blake Richey.
Benchmarking the MAX78000 artificial intelligence microcontroller
for deep learning applications. In Real-Time Image Processing and Deep
Learning 2022, volume 12102, pages 47-52. SPIE, 2022.

Linghe Kong, Jinlin Tan, Junqin Huang, Guihai Chen, Shuaitian Wang,
Xi Jin, Peng Zeng, Muhammad Khan, and Sajal K Das. Edge-computing-
driven Internet of Things: A survey. ACM Computing Surveys, 55(8):1-
41, 2022.

Ruijin Wang, Jinshan Lai, Zhiyang Zhang, Xiong Li, Pandi Vijayaku-
mar, and Marimuthu Karuppiah. Privacy-preserving Federated Learn-
ing for Internet of Medical Things under Edge Computing. IEEE
Jjournal of biomedical and health informatics, 27(2):854-865, 2022.
Cheng Wang, Zenghui Yuan, Pan Zhou, Zichuan Xu, Ruixuan Li,
and Dapeng Oliver Wu. The security and privacy of mobile-edge
computing: An artificial intelligence perspective. IEEE Internet of
Things Journal, 10(24):22008-22032, 2023.

Jinhyuk Kim and Shiho Kim. Hardware accelerators in embedded
systems. In Artificial Intelligence and Hardware Accelerators, pages
167-181. Springer, 2023.

Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al.
MCUNet: Tiny deep learning on iot devices. Advances in neural infor-
mation processing systems, 33:11711-11722, 2020.

Swapnil Sayan Saha, Sandeep Singh Sandha, and Mani Srivastava.
Machine learning for microcontroller-class hardware: A review. IEEE
Sensors Journal, 22(22):21362-21390, 2022.

JiLin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan,
and Song Han. On-device training under 256kb memory. Advances in
Neural Information Processing Systems, 35:22941-22954, 2022.

Young D Kwon, Rui Li, Stylianos I Venieris, Jagmohan Chauhan,
Nicholas D Lane, and Cecilia Mascolo. TinyTrain: resource-aware
task-adaptive sparse training of DNNs at the data-scarce edge. arXiv
preprint arXiv:2307.09988, 2023.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Yushan Huang, Ranya Aloufi, Xavier Cadet, Yuchen Zhao, Payam Bar-
naghi, and Hamed Haddadi. Low-Energy On-Device Personalization
for MCUs. In 2024 IEEE/ACM Symposium on Edge Computing (SEC),
pages 45-58. IEEE, 2024.

Erez Manor and Shlomo Greenberg. Custom Hardware Inference
Accelerator for Tensorflow Lite for Microcontrollers. IEEE Access,
10:73484-73493, 2022.

Guanchu Wang, Zaid Pervaiz Bhat, Zhimeng Jiang, Yi-Wei Chen,
Daochen Zha, Alfredo Costilla Reyes, Afshin Niktash, Gorkem Ulkar,
Erman Okman, Xuanting Cai, et al. Bed: A Real-Time Object Detection
System for Edge Devices. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, pages 4994-4998,
2022.

Weining Song, Stefanos Kaxiras, Thiemo Voigt, Yuan Yao, and Luca
Mottola. TaDA: Task Decoupling Architecture for the Battery-less
Internet of Things. In Proceedings of the 22nd ACM Conference on
Embedded Networked Sensor Systems, pages 409-421, 2024.

Luca Caronti, Khakim Akhunov, Matteo Nardello, Kasim Sinan
Yildirim, and Davide Brunelli. Fine-grained hardware acceleration
for efficient batteryless intermittent inference on the edge. ACM
Transactions on Embedded Computing Systems, 22(5):1-19, 2023.
Taesik Gong, Fahim Kawsar, and Chulhong Min. DEX: Data Chan-
nel Extension for Efficient CNN Inference on Tiny Al Accelerators.
Advances in Neural Information Processing Systems, 37:43925-43951,
2025.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. How to
Evaluate Deep Neural Network Processors: TOPS/W (Alone) Consid-
ered Harmful. IEEE Solid-State Circuits Magazine, 12(3):28-41, 2020.
ARM. ARM Ethos-U Processor Series Brief, 2022. Accessed: 2025-03-
12.

Marco Giordano and Michele Magno. A Battery-Free Long-Range
Wireless Smart Camera for Face Recognition. In Proceedings of the
19th ACM Conference on Embedded Networked Sensor Systems, pages
594-595, 2021.

Bakar, Abu and Goel, Rishabh and De Winkel, Jasper and Huang, Jason
and Ahmed, Saad and Islam, Bashima and Pawelczak, Przemystaw and
Yildirim, Kasim Sinan and Hester, Josiah. Protean: An energy-efficient
and heterogeneous platform for adaptive and hardware-accelerated
battery-free computing. In Proceedings of the 20th ACM Conference on
Embedded Networked Sensor Systems, pages 207-221, 2022.

Edward Humes, Mozhgan Navardi, and Tinoosh Mohsenin. Squeezed
Edge YOLO: Onboard Object Detection on Edge Devices, 2023.
Yushan Huang, Taesik Gong, SiYoung Jang, Fahim Kawsar, and Chul-
hong Min. Energy Characterization of Tiny Al Accelerator-Equipped
Microcontrollers. In Proceedings of the 2nd International Workshop
on Human-Centered Sensing, Networking, and Multi-Device Systems,
pages 1-6, 2024.

TensorFlow.org. TensorFlow Lite for Microcontrollers. https://www.
tensorflow.org/lite/microcontrollers, 2022. Accessed: 2025-03-13.
Changmin Jeon, Taesik Gong, Juheon Yi, Fahim Kawsar, and Chulhong
Min. TinyMem: Boosting Multi-DNN Inference on Tiny Al Accelera-
tors with Weight Memory Virtualization. In Proceedings of the 26th
International Workshop on Mobile Computing Systems and Applications,
HotMobile ’25, page 1-6, New York, NY, USA, 2025. Association for
Computing Machinery.

GreenWaves Technologies. GAP8 Product Brief, 2021. Accessed:
2025-03-12.

Cristian Ramirez, Adrian Castello, Héctor Martinez, and Enrique S.
Quintana-Orti. Communication-Avoiding Fusion of GEMM-Based
Convolutions for Deep Learning in the RISC-V GAP8 MCU. I[EEE
Internet of Things Journal, 11(21):35640-35653, 2024.


https://www.analog.com/en
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers

(32]

(33]
(34]
(35]

(36]

— ——
w W W
O 0 3
o

[40]

[48

—

[49

—

(50

=

(51

—

(52

—

Julian Moosmann, Hanna Miller, Nicky Zimmerman, Georg
Rutishauser, Luca Benini, and Michele Magno. Flexible and Fully
Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge
Systems. IEEE Access, 12:75093-75107, 2024.

Himax Technologies. WiseEye2 AI Processor, 2025. Accessed: 2025-
03-12.

NXP Semiconductors. FRDM-MCXN947 Development Board, 2025.
Accessed: 2025-03-12.

STMicroelectronics. STM32H7A3ZI Microcontroller, 2025. Accessed:
2025-03-12.

Tommaso Addabbo, Ada Fort, Marco Mugnaini, Valerio Vignoli, Mat-
teo Intravaia, Marco Tani, Monica Bianchini, Franco Scarselli, and
Barbara Toniella Corradini. Gravimetric system for enhanced security
of accesses to public places embedding a mobilenet neural network
classifier. IEEE Transactions on Instrumentation and Measurement,
71:1-10, 2022.

Espressif Systems. ESP32-S3 Datasheet, 2025. Accessed: 2025-03-12.
Milk-V. Milk-V Duo, 2025. Accessed: 2025-03-12.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han.
Once-for-All: Train One Network and Specialize it for Efficient De-
ployment, 2020.

Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, and
Mohammad Sabokrou. Lets keep it simple: Using simple architectures
to outperform deeper and more complex architectures, 2023.

Inc. Analog Devices. Motor Fault Sample Dataset. https://github.com/
analogdevicesinc/CbM-Datasets/tree/main, 2024. Accessed: 2024-04-
01.

Tsung-Yi Lin, Peizhao Ma, Serge Belongie, and Fei-Fei Li. Microsoft
COCO: Common Objects in Context, 2014. Accessed: 2025-03-12.
Monsoon Solutions Inc. Monsoon High voltage power monitor. 2024.
https://www.msoon.com/.

Luckfox. Luckfox Pico. https://www.luckfox.com/Luckfox-Pico. Ac-
cessed: 2025-03-17.

Canaan. K230. https://developer.canaan-creative.com/k230/zh/dev/
00_hardware/K230_datasheet.html. Accessed: 2025-03-17.

ARM. ARM TrustZone, 2025. Accessed: 2025-03-17.

Vijay Janapa Reddi, David Kanter, Peter Mattson, Jared Duke, Thai
Nguyen, Ramesh Chukka, Ken Shiring, Koan-Sin Tan, Mark Charlebois,
William Chou, et al. MLPerf mobile inference benchmark: An industry-
standard open-source machine learning benchmark for on-device AL
Proceedings of Machine Learning and Systems, 4:352-369, 2022.
Stefanos Laskaridis, Kleomenis Katevas, Lorenzo Minto, and Hamed
Haddadi. Melting point: Mobile evaluation of language transformers.
In Proceedings of the 30th Annual International Conference on Mobile
Computing and Networking, pages 890-907, 2024.

Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Sid-
dharth Samsi, and Jeremy Kepner. Survey and benchmarking of ma-
chine learning accelerators. In 2019 IEEE high performance extreme
computing conference (HPEC), pages 1-9. IEEE, 2019.

Swagath Venkataramani, Vijayalakshmi Srinivasan, Wei Wang, San-
chari Sen, Jintao Zhang, Ankur Agrawal, Monodeep Kar, Shubham
Jain, Alberto Mannari, Hoang Tran, et al. RaPiD: Al accelerator for
ultra-low precision training and inference. In 2021 ACM/IEEE 48th An-
nual International Symposium on Computer Architecture (ISCA), pages
153-166. IEEE, 2021.

Francesco Conti, Pasquale Davide Schiavone, and Luca Benini. Xnor
neural engine: A hardware accelerator ip for 21.6-fj/op binary neural
network inference. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2940-2951, 2018.

Sayed Saad Afzal, Waleed Akbar, Osvy Rodriguez, Mario Doumet,
Unsoo Ha, Reza Ghaffarivardavagh, and Fadel Adib. Battery-free
wireless imaging of underwater environments. Nature communications,

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Millar et al.

13(1):5546, 2022.

Yuchen Zhao, Sayed Saad Afzal, Waleed Akbar, Osvy Rodriguez, Fan
Mo, David Boyle, Fadel Adib, and Hamed Haddadi. Towards battery-
free machine learning and inference in underwater environments.
In Proceedings of the 23rd Annual International Workshop on Mobile
Computing Systems and Applications, pages 29-34, 2022.

Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan
Sarangapani. A comprehensive survey on model compression and
acceleration. Artificial Intelligence Review, 53:5113-5155, 2020.
Muhammad Zawish, Steven Davy, and Lizy Abraham. Complexity-
driven model compression for resource-constrained deep learning on
edge. IEEE Transactions on Artificial Intelligence, 5(8):3886-3901, 2024.
Yu Pan, Ye Yuan, Yichun Yin, Zenglin Xu, Lifeng Shang, Xin Jiang,
and Qun Liu. Reusing pretrained models by multi-linear operators for
efficient training. Advances in Neural Information Processing Systems,
36:3248-3262, 2023.

Jakub M Tarnawski, Amar Phanishayee, Nikhil Devanur, Divya Ma-
hajan, and Fanny Nina Paravecino. Efficient algorithms for device
placement of dnn graph operators. Advances in Neural Information
Processing Systems, 33:15451-15463, 2020.

Lingda Li, Robel Geda, Ari B Hayes, Yanhao Chen, Pranav Chaudhari,
Eddy Z Zhang, and Mario Szegedy. A simple yet effective balanced
edge partition model for parallel computing. Proceedings of the ACM
on Measurement and Analysis of Computing Systems, 1(1):1-21, 2017.
Stefanos Laskaridis, Alexandros Kouris, and Nicholas D. Lane. Adap-
tive Inference through Early-Exit Networks: Design, Challenges and
Directions. In Proceedings of the 5th International Workshop on Em-
bedded and Mobile Deep Learning, EMDL’21, page 1-6, New York, NY,
USA, 2021. Association for Computing Machinery.

Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar.
Delight: Adding energy dimension to deep neural networks. In Pro-
ceedings of the 2016 International Symposium on Low Power Electronics
and Design, ISLPED 16, page 112-117, New York, NY, USA, 2016.
Association for Computing Machinery.

Noam Shazeer, Kayvon Fatahalian, William R. Mark, and Ravi Teja
Mullapudi. HydraNets: Specialized Dynamic Architectures for Effi-
cient Inference. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8080-8089, 2018.


https://github.com/analogdevicesinc/CbM-Datasets/tree/main
https://github.com/analogdevicesinc/CbM-Datasets/tree/main
https://www.msoon.com/
https://www.luckfox.com/Luckfox-Pico
https://developer.canaan-creative.com/k230/zh/dev/00_hardware/K230_datasheet.html
https://developer.canaan-creative.com/k230/zh/dev/00_hardware/K230_datasheet.html

Benchmarking Ultra-Low-Power yNPUs

Supplementary Material

complete latency (ms) and power (mnW) measurements across each stage, model, and platform.
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Notes:
- For MCUs without neural hardware, STM32H7A3ZI and ESP32, Initialization and Memory I/O are combined.

- The post-processing for ResidualNet, SimpleNet, and NAS models is composed of a softmax operation.

- The post-processing for YOLOv1 is a NMS (

, also with softmax.

) operation

non-max suppression
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