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Abstract
Large-scale environmental monitoring demands real-time,
spatially-aware coordination across distributed networks.
However, existing distributed computing models poorly cap-
ture spatial structure, hindering dynamic collaboration and
fine-grained access control. We argue that space must be
treated as a first-class concept in programming models for
these systems based on bigraphs – a formalism that explic-
itly models spatial arrangements, data movement, and ac-
cess policies, while supporting real-time reconfiguration and
localised reasoning. This approach facilitates secure, com-
posable, and dynamically verifiable coordination across geo-
graphically distributed nodes and organisations, paving the
way for scalable, responsive environmental networks.

1 The Case for Spatial Programming
The world’s most pressing challenges – from climate change
to biodiversity loss – demand large-scale, spatially-distributed
monitoring and reasoning. Global environmental monitor-
ing networks already deploy millions of nodes across vast,
heterogeneous regions: carbon flux towers across the Ama-
zon basin [5], acoustic monitoring across the Great Barrier
Reef [3], marine salinity monitors on drifting buoys [8], and
even satellites orbiting the Earth [9]. These networks are
increasingly expected to support real-time decision-making
and cross-organisational collaboration at unprecedented scale [2].
Yet, our current dominant computing paradigms are poorly
suited to managing inherently spatial arrangements.
Traditional models of distributed computing prioritise

message passing and connectivity, but these abstractions fail
to capture the spatial dynamics of environmental networks.
Typically, data is captured locally, shipped to central servers,
and made available after processing – often following com-
plex transformations and lengthy access agreements. This
model introduces delays and makes real-time coordination
practically unachievable. For example, if multiple conserva-
tion organisations wish to jointly manage a transboundary
habitat, they are typically forced to manually share and repli-
cate data repositories, design custom APIs, and construct
static access control schemes. These mechanisms are also
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poorly equipped to handle fine-grained, location-aware rea-
soning – such as selectively sharing live data only within
active patrol zones, or automatically updating permissions
as data traverses spatial boundaries.

What is needed is a programming model that treats space
as a first-class dimension, enabling developers to explicitly
describe spatial layouts, boundaries, and location-dependent
policies. More importantly, it would also enable dynamic spa-
tial reasoning: determining who can see which data, at what
times, and in which places should be an adaptable, context-
driven property of the platform itself. Without this capability,
programming large-scale monitoring infrastructures remains
fundamentally mismatched to the spatial complexity of the
real-world phenomena they aim to monitor.
We argue that spatial programming – explicitly embed-

ding spatial structure and movement into software design –
is a necessary step towards building more robust, scalable,
and responsive environmental networks. A spatial program-
ming approach allows us to reason about and control how
nodes, agents, and data interact across space, not just across
the network. Importantly, this opens the door to spatial ac-
cess control: the ability to govern data flow based on spatial
structure in real-time. Instead of constructing bespoke data
pipelines and coarse-grained sharing agreements, we can
use a universal, composable model of space to scope collabo-
ration, data visibility, and policy enforcement directly to the
spatial regions where they are relevant.

Bigraphs provide a model of the space and motion of com-
munication agents [4], capturing spatial, organisational, and
communication relationships within a single formalism. For-
mally, a bigraph consists of two orthogonal structures over
the same set of typed entities (Fig. 1). The place graph is a
rooted forest encoding nested spatial hierarchy, with roots
naturally modelling distinct adjacent regions. The link graph
is a hypergraph connecting entity ports, encoding non-spatial
relationships. For instance, a network or a data flow link can
be modelled as a hyperedge joining multiple ports (𝑒.𝑔., data
flow paths between organisations, or even monitoring routes
such as ecological corridors). Joining the link graph with the
place graph enables the modelling of scenarios where actions
or policies depend on both location and non-spatial connec-
tions. Bigraphs include closed links – complete hyperedges
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Figure 1: An illustrative bigraph, constructed from its underlying place and link graphs.
connecting nodes – alongside open links, incomplete hyper-
edges ending in outer names (𝑒.𝑔., 𝑥 in Fig. 1). Each node
is associated with a control, defining its type and interface.
Fig. 2 outlines how a bigraph models an urban monitoring
network, capturing various data sources and ‘applications’
or data processing pipelines.

Reaction rules allow transformations over the bigraph, en-
coding policy (who can connect to what node), and providing
a mechanism to program dynamic changes to physical envi-
ronments in real-time. For example, a rule can model data
moving between connected organisations, automatically sev-
ering links when crossing a spatial boundary.

react shutdown_nodes =
/x (Room.( Users .() || Node{x} || rest))
--> Room.(rest);

begin brs
init ...;
rules = [{ shutdown_nodes}, {...}];
end

Listing 1: A reaction rule: all nodes in Room are shut
down when no users are present.

While tooling exists to compute the transition systems of
Bigraphical Reactive Systems, such as BigraphER [6], current
approaches require programming directly in low-level for-
malisms that are unwieldy for expressing high-level spatial
concepts. Although languages like Verse [1] are emerging
for spatial programming in 3D game engines, they lack the
foundational spatial framework based on hierarchy of spatial
containment that bigraphs provide.

We envision a higher-level spatial programming language
that treats spatial modelling as a first-class concern, compil-
ing down to bigraphical representations for execution and
verification. Such a language would enable declarative spa-
tial policies, automatic data flow management across organi-
sational boundaries, and real-time adaptation to changing
conditions. Rather than retrofitting spatial reasoning onto
existing systems, we can embed it directly into the program-
ming model – making space-aware coordination natural and
composable.

Description Type(s) Arity Atomic Notation

Node idle N 1 circle
Node in use NU 1 amber circle
Node failed NF 1 X dark grey circle
Links L 0 —
Link ends E 1 X —
Configuration Conf 1 rounded box
Data/Setting P(x), W(x), . . . 0 X small coloured box
App App(x) 0 oval
App token A(x) 0 X small coloured circle

TABLE I
ENTITY TYPES USED IN BIGRAPH MODEL.

by the Conf rounded boxes in the region on the right. We adopt
a code of small coloured boxes within Conf to represent the
sensors installed on each node: red for atmospheric pressure
(P(x)), green for temperature (T(x)), blue for wind speed
(W(x)), and yellow for vibration (V(x)), etc. Typically, the
types of these entities are parameterised and are used to
carry data. For example, a node configuration may contain
an entity of type P(987.54) to indicate a specific value of
sensed atmospheric pressure. Other types of entity we employ
in our model include MAC(x) and IP(x) to represent MAC
and IP addresses, respectively. Each type in the form MAC(x)
is a singleton type and is used to uniquely identify a node.
In algebraic terms, the bigraph in Fig. 2a can be expressed as
follows:

/l /a /b /c (Na.L.(Ex |Ey |El) k NUb.(L.El |A(1) |A(2)) k NFc

k (Confc.(W |T |P) |Confb.(W |V) |Confa.(T |P)))

Fig. 3. Bigraph model of WSN applications.

Various applications may use different sets of nodes of
the network: this is expressed in the model by placing app
tokens (A(x)) inside NU nodes. They are represented as small
coloured circles, where a given colour indicates a specific
application. In Fig. 2 for example, applications Srv1 and Srv2
(defined in the case-study in Sec. II) are assigned the mauve
and yellow colours and are deployed on the amber node.
Application-specific properties and settings are indicated as
in Fig. 3 by the two ovals of type App(1) and App(2). The
mapping between applications and app tokens is defined by
placing a token A(x) in App(x). Note that additional settings
can be stored within the two ovals as they both contain a site.
This example is expressed algebraically as

App(1).(A(1) | id) | App(2).(A(2) | id)

A complete summary of the types defined by our model is
reported in Tab. I. At this stage, the full model of an example
city-wide sensor network infrastructure can be defined by
composing three bigraphs defined as in the three examples

Fig. 4. Bigraph model of example city-wide sensor network infrastructure.
The three regions in the bigraph correspond, from left to right, to the Physical,
Data, and Service perspectives, respectively.

described above (Figs 1, 2, and 3). The result is shown in
Fig. 4. Following the work of Benford et al. [5], we adopt a
modelling approach based on three design perspectives each
of which addresses a different facet of the overall system
in depth: Physical perspective in which we model physical
locations, nodes and their connectivity; Data perspective in
which we model sensed data and node settings; Service
perspective in which we model key aspects of the application
deployed on the network. Each perspective corresponds to a
region in the bigraph.

IV. MODELLING EVOLVING SENSOR NETWORK
INFRASTRUCTURES

The model introduced in the previous section only supports
static configurations: it does not describe the evolution of
a system over time. In our application scenario, temporal
changes are triggered by the occurrence of events, such as
nodes failing, new nodes being installed, new applications be-
ing deployed, etc. We extend the model to encompass dynamic
aspects by representing events arising in WSNs by means
of reaction rules, a form of rewrite rules for bigraphs. We
employ reaction rules in two orthogonal ways: as deterministic
sequences of operations to update a bigraph; as components
of a Bigraphical Reactive System (BRS) that can iteratively
be applied in any order to compute the set of reachable
configurations.

We start by providing a formal definition of reaction rules
and BRS and then illustrate our model of events through four
examples.

A. Events as reaction rules

A reaction rule consists of a pair of bigraphs: the left-hand
side specifies the portions of a bigraph to be changed, while
the right-hand side specifies how those are changed. We use
I to indicate the definition of reaction rules. Like in any

rule-based system, a reaction rule R IR0 is applicable to a
bigraph B when R is an occurrence in B (this is also called
bigraph matching). The result of the application is bigraph B0

which is obtained by substituting (in B) an occurrence of R
with R0. Such a reaction is indicated with B BB0. Finally,
reaction rules can be parameterised.

Figure 2: Bigraphical model of an urban network – the
three regions in the graph represent the physical layer
(nodes in space), the data layer (their gathered data),
and the application layer (a data pipeline built atop the
network) [7].
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